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Abstract

This paper reviews advantages which stem from using methods of optimal control theory and variational calculus in

nonequilibrium thermodynamics of transport phenomena, focusing on selected problems of statistical thermodynamics

rather than on typical phenomenological descriptions. Neglected are aspects of thermodynamic stability and oscillatory

phenomena, as those frequently considered earlier. The main problems discussed here are: statistical aspects of non-

equilibrium conservation laws, work-producing devices described by master equations, and development of living

systems governed by a complexity criterion based on information-theoretic entropy. These problems are presented

mainly from the viewpoint of the contribution of the author and some associated researchers, yet an attempt is made to

give a comparison of our results with those following from main work of others. � 2002 Elsevier Science Ltd. All

rights reserved.

1. Introduction

The purpose of this paper which originated from a

conference talk 1 is to discuss the help that can be ob-

tained from statistical theories when describing non-

equilibrium thermodynamic systems. To illustrate

contemporary tendencies, several problems of nonequi-

librium statistical thermodynamics are analyzed, es-

pecially those which show visible link with macroscopic

effects. Physical aspects of Boltzmann equation and its

link with entropy and time arrow are not discussed; the

reader is referred to books on nonequilibrium statistical

mechanics and a paper by Lebovitz [1]. Section 2 treats

the statistical aspect of connection between various

representations of thermodynamics of nonequilibrium

fluids with heat flow, and points out the role of a rela-

tionship (resembling the Gouy–Stodola law) which links

energy and entropy representations. Section 3 applies

this law and some results of Grad’s [2] moment ap-

proach to pass from the entropy representation to the

energy and Lagrangian representations of thermody-

namics. Section 4 uses resulting Lagrangians to obtain

the energy–momentum tensor for the fluid with heat

flow and formulate associated conservation laws. Sec-

tion 5 deals with work producing or work-consuming

systems which are governed by master equations, i.e.

their finite rate of energy dissipation and thermody-

namic limits are described statistically. Issues such as:

efficiency decrease caused by dissipation, finite rate

bounds, and finite time generalization of the classical

available energy (exergy) are main results in the classical

limit when thermodynamic intensities can be defined.

Section 6 refers to a recent work of Szwast [3] and re-

views evolution of living organisms treated as multistage

systems by the information-theoretic entropy. Finally,

Section 7 addresses an extremality principle for a po-

tential as a driving factor in the evolution dynamics, the

potential being the entropy or an entropy-like com-

plexity function. Classical thermodynamic quantities do

not appear in this approach, yet the statistical model is

governed by an extremum principle which, as in ther-

modynamics, implies extremal properties for a potential.

A basic assumption of this work is that a bridge can be

laid to link purely thermodynamic approaches with

those which must abandon thermodynamics and rely on

methods of statistical physics and information theory.
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2. Nonequilibrium fluids with heat flow in various repre-

sentations of thermodynamics

Here our task is to develop the thermodynamics of

heat flow without local equilibrium. The description

obtained will next be used to construct suitable La-

grangians, variational principles and conservation laws.

We work in the framework of extended thermodynamics

of fluids [5].

Consider a one-component fluid conducting heat at

state A, Fig. 1, off but near the Gibbs surface (BDC)

when the local equilibrium assumption is inapplicable.

The energy of a fluid’s element moving with the moving

frame of reference is the nonequilibrium internal energy.

This internal energy depends not only on the usual state

variables (wherever they have meaning), but also on

nonequilibrium variables such as heat flux or diffusive

entropy flux. Here we select the diffusive entropy flux, js,

as the nonequilibrium variable of choice. It is treated as

an unconstrained internal variable which relaxes to

equilibrium.

The nonequilibrium energy density qe of the fluid (or

its specific energy e) is a function of the fluid density q,

specific entropy s and diffusive entropy flux js, the relax-

ing variable. The equilibrium internal energy density qeeq

of a stable system is the minimum of qe with respect to

unconstrained relaxing js at constant q and s. As q ¼ v�1,

the specific volume, the minimum of qe (or e itself) with

respect to js, occurs at constant specific entropy s and

volume v which are the proper variables at which the

energy attains extremum at equilibrium. This is, of

course, well known from classical thermodynamics [6].

Since js is a diffusive flux, the minimum occurs at js ¼ 0.

In the absence of an external magnetic field the ro-

tation of the system does not change the form of the

nonequilibrium function eðs; q; jsÞ which depends then

only on the length of the vector js; compare the kinetic

Nomenclature

a multiplier, heat coefficient

C complexity

q density

x frequency constant

rs entropy production

A area

A action

C peculiar velocity

c specific heat

e energy

G fluid flowrate

g, g1 conductances

H Hamiltonian

j flux density

k rate constant

L kinetic potential

m mass

n stage number

pi probabilities

P pressure

Q energy flux

q heat flux

R gas constant

Rj chemical resistance

rj rate of jth reaction

S information entropy

Sr dissipated entropy

s specific entropy

T temperature

u macroscopic velocity

v diffusion velocity

V potential

W total work

w specific work

x radius vector

z adjoint variable

Fig. 1. Arbitrariness of the equilibrium reference state chosen

for given nonequilibrium state, point A. Three various equilib-

rium states at the points B and C and D correspond to the en-

ergy, entropy and free energy representation, respectively. An

observer, knowing q and e (from an experiment or a computa-

tion) formulates his description of the state A in terms of the

equilibrium parameters at C for the arbitrary set of nonequi-

librium variables (here the heat flux q or the entropy flux js).

However, one who knows q and s (e. g., from distribution

function f corresponding to A) can base his equations on the

equilibrium properties at B. When point A moves the back-

ground equilibrium states (B, C and D) vary in time. The con-

ventional picture of motion in terms of Hamilton’s principle

corresponds to following the behavior of B and the kinetic en-

ergy of entropy flux, whereas the kinetic theory view corresponds

to tracking of C and the deviation of entropy from equilibrium.

The transition from one view to the other is possible [4].
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theory expression, e.g., Eq. (24). The following is the

McLaurin expansion of e with respect to js in the vicinity

of equilibrium (js ¼ 0);

eðs; q; jsÞ ¼ eðs; q; 0Þ þ 1

2
o2e=oj2s
� �

s;q
j2s þ 0ðs; q; jsÞ; ð1Þ

where eðs; q; 0Þ ¼ eðs; qÞ is the equilibrium function of

specific energy well known in thermostatics. Since

ðoe=ojsÞq;s ¼ 0 at equilibrium, the first-order term dis-

appears from expansion (7), and the first nonvanishing

nonequilibrium term is the term quadratic with respect

to js. This notion pertains, of course, to any variable

which vanishes at equilibrium. It has to be remembered

that the second derivative ðo2e=oj2s Þ in Eq. (1) is deter-

mined at constant s and q and hence it depends on these

quantities as parameters. The same constraints apply

also to the third- and higher-order terms.

Consequently with js as the only independent variable

pertaining to nonequilibrium behavior, and not to far

from equilibrium (i.e., not in the basin of a limit cycle,

for example), the specific internal energy of a nonequi-

librium state can be expressed as:

eðs; q; jsÞ ¼ eðs; q; 0Þ þ Deðs; q; jsÞ; ð2Þ

where

De ¼ 1

2
ðo2e=oj2s Þs;qj

2
s þ 0ðs; q; jsÞ ð3Þ

is the nonequilibrium correction to the internal energy;

for sufficiently small js, De can always be approximated

by its j2s term.

From Eq. (2) the following general equation for the

perfect differential of the specific internal energy e is

deduced:

deðs; q; jsÞ ¼ dðeeq þ DeÞ
¼ ðoeeq=osþ oDe=osÞdsþ ðoeeq=oq

þ oDe=oqÞdq þ oDe=ojs:djs

¼ ½T ðs; qÞ þ DT ðs; q; jsÞ�dsþ q�2½P ðs; qÞ
þ DP ðs; q; jsÞ�dq þ asðs; q; jsÞ � djs: ð4Þ

Eq. (4) defines the corrections DT and Dq which should

be added to T ðq; sÞ and P ðq; sÞ to obtain the proper

values of the derivatives oe=os and oe=oq, Eqs. (7) and

(8). In the so-called energy representation of thermo-

dynamics [6,7], the space spanned by s and q takes on js
as an extra variable. For a given nonequilibrium state A,

the equilibrium state corresponds in this representation

to the point B in Fig. 1. Other reference equilibrium

states can be used depending on the basic thermody-

namic variables used; see, e.g., points C and D in Fig. 1

for isoenergetic (e¼ constant) and isothermal equilib-

rium. They correspond, respectively, with using the en-

tropy and free energy as potentials, i.e., with the entropy

and free energy representations. Where the choice of

definition is important and not explicit, the subscript

notation will be used to distinguish the reference equi-

librium quantities; i.e., symbols TðBÞ; PðCÞ, etc., will be

used or the variables of definite representations will be

specified. From Eq. (4) one obtains the quantities

T ðs; q; jsÞ ¼ T ðs; qÞ þ DT ðs; q; jsÞ; ð5Þ

Pðs; q; jsÞ ¼ Pðs; qÞ þ DT ðs; q; jsÞ: ð6Þ

These are customarily called ‘‘nonequilibrium tempera-

tures and pressures’’. However, they are limited in the

sense that they are only measures of partial derivatives of

the energy with particular variables chosen to be held

constant in the particular frame of variables which in-

cludes q and s, namely:

T ðs; q; jsÞ ¼ oeðs; q; jsÞq;js=os ð7Þ

Pðs; q; jsÞ ¼ q2oeðs; q; jsÞq;js=oq: ð8Þ

The last quantity we define is the vector variable

asðs; q; jsÞ adjoint with respect to the entropy flux js such

that

asðs; q; jsÞ ¼ oDeðs; q; jsÞq;s=ojs: ð9Þ

We will also use the entropy flux adjoint based on the

correction to the energy of unit volume DðqeÞ
isðs; q; jsÞ ¼ oDqeðs; q; jsÞq;s=ojs ð10Þ

which has the dimension of momentum per unit entropy

and is more important than as. The significance of as and

is will be shown later (Section 3). Restricted to the

quadratic approximation of De in Eq. (1) in the case of

small flux js, on the basis of Eqs. (2), (3), (7) and (8) the

‘‘nonequilibrium corrections’’ DT and DP caused by the

presence of flux js are

DT ðs; q; jsÞ ¼
1

2
ðo3De=oj2sosÞ

eq
j2s ; ð11Þ

DP ðs; q; jsÞ ¼
1

2
q2ðo3De=oj2soqÞ

eq
j2s ; ð12Þ

i.e., they are quadratic functions of js. From Eqs. (3) and

(10) the entropy flux adjoint is is

is ¼ o2qeðs; q; jsÞ=oj2s
� �

js: ð13Þ

In Eqs. (11)–(13) the equilibrium superscript means that

the corresponding derivatives are evaluated at js ¼ 0.

Therefore the coefficients of js in Eqs. (11)–(13) depend

on the classical variables ðs; qÞ exclusively, so long as the

expansion (1) around equilibrium is applicable. The

reason we consider the energy representation is that it is

the most natural representation for the extension of

Hamilton’s principle which we are going to investigate.

If however the thermodynamic space is spanned by the

variables e, q and q one naturally uses the entropy

representation [6].
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By considering the expansion of the entropy around

the isoenergetic equilibrium with respect to uncon-

strained flux q (or js) one can obtain the formalism

analogous to that presented here in energy representa-

tion. The corresponding formulae are omitted. It is im-

portant to realize that for a single nonequilibrium state of

the system the use of the entropy representation and en-

ergy representation establish two different equilibrium

states located on the Gibbs surface, Fig. 1. This of course,

is because of the difference in what is held constant. The

distance between these two equilibrium states (B and C,

Fig. 1) understood e.g. as the Weinhold distance [7,8] or

equivalent probability distance [9] increases with the

distance of the state A from the Gibbs surface. This

distance can also be measured in terms of the modulus

of the flux js or in terms of the module of the excesses

De ¼ AB or Ds ¼ AC. When the curvature of the Gibb’s

surface can be neglected, corresponding to the near-

equilibrium situation, the two excesses are linked by an

equality resembling the Gouy–Stodola law [6,10]).

De ¼ �TDs: ð14Þ

Both equilibrium temperatures pertaining to the points

B or C or nonequilibrium temperature T at A are ac-

ceptable in Eq. (14) in the near equilibrium case. In this

case, any conventional variable (P ; T . . . etc.) can be re-

placed by its equilibrium values (P eq; T eq . . .etc.) in the

multiplicative coefficients of any relationship.

3. From entropy to energy corrections by using kinetic

theory

It is essential to recognize that the entropy repre-

sentation is natural for the formalism of the kinetic

theory [2] in which, by definition, the internal energy

comprises the only contribution except that of macro-

scopic motion u2=2 and external field. Hence the specific

energy of an ideal gas or fluid with heat is equal to the

specific energy at equilibrium C in Fig. 1. The only

temperatures and pressures that appear in the expres-

sions of kinetic theory are TðCÞ and PðCÞ. From this for-

malism one determines the nonequilibrium corrections

Ds or De in terms of the nonequilibrium density distri-

bution function f. Here, for the reader’s convenience, we

recapitulate the results of several works ([2,4], and

others) for dilute gas of rigid spheres in the relaxation

time approximation of the Boltzmann equation. The

molecular velocity distribution function f, out of equi-

librium but close to it, is given in the form

f ðCÞ ¼ f eqðCÞð1 þ /1Þ; ð15Þ

where f is the local equilibrium (Maxwell–Boltzmann)

distribution pertaining to the entropy representation

equilibrium (point C, Fig. 1). f and f eq are scalars, but

functions of the peculiar velocity C ¼ c - u, and /1 is a

functionof the deviation fromequilibrium.This deviation

is expressed in terms of the rT in the Chapman–Enskog

method and in terms of the heat flux q in Grad’s method.

Using Eq. (15) in the definition of entropy, one in-

tegrates the expression f ln f over all of the space of the

molecular velocity c,

qs ¼ �kB

Z
f ln f dc: ð16Þ

Proceeding with development of s up to second-order in

/1, one obtains

qs ¼ ðqsÞeq þ ðqsÞð1Þ þ ðqsÞð2Þ; ð17Þ

with local equilibrium entropy

ðqsÞeq ¼ �kB

Z
f eq ln f eq dc ð18Þ

and nonequilibrium correction

ðqsÞð1Þ ¼ �kB

Z
f eq/1 ln f eq dc ¼ 0: ð19aÞ

This proves again that one deals with the entropy rep-

resentation where the entropy is maximum at equilib-

rium. In the energy representation the analogous

equation is

ðqeÞð1Þ ¼
Z

f eq/1mc
2 dc ¼ 0; ð19bÞ

which corresponds to reaching the minimum energy.

The second-order correction to the entropy density (in

entropy representation) is

ðqsÞð2Þ ¼ qDs ¼ � 1

2
kB

Z
f eq/2

1 dc: ð20Þ

Hence, in view of the relation between De and Ds implied

by Fig. 1 or Eq. (14)

De ¼ �kBT=ð2qÞ
Z

f eq/2
1 dc: ð21Þ

Since the state is close to the equilibrium surface, the

multiplicative factors containing conventional thermo-

dynamic variables can always be evaluated at arbitrary

equilibrium points (B, C, or D in Fig. 1). However in the

formulas such as Eqs. (15), (22) and (23) they were

evaluated (in the kinetic theory) for the case of the

isoenergetic equilibrium (point C, Fig. 1). The function

/1, obtained in Grad’s method when the system’s dis-

equilibrium is maintained by a (vector) heat flux q is

/1 ¼
2

5
ðm=Pk2

BT
2Þ mC2

2

�
� 5

2
kT
�
C � q; ð22Þ

where m is the mass of a molecule [2,5]. From Eqs. (20)–

(22) one obtains for the entropy deviation

Ds ¼ �ðm=5qPkBT 2Þq2 ð23Þ
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and for the energy deviation, Eq. (14), in terms of the

entropy flux js ¼ qT�1

De ¼ ð1=5Þðm2=k2
Bq2Þj2s ¼ q�2gj2s=2: ð24Þ

Eqs. (23) and (24) hold to the accuracy of the thirteenth

moment of the velocity [2]. When passing from Eqs. (23)

and (24) the state equation P ¼ qkBTm�1 was used and

the constant g is defined as

g ¼ 2mTq
5PKB

¼ 2m2

5k2
B

: ð25Þ

In this way we abandoned the entropy representation.

The pressure in Eqs. (22) and (25) is the ideal gas

pressure, given by the definition used in the kinetic theory

[2]. Eq. (24) with constant g defined by Eq. (25) is the

characteristic feature of the ideal monoatomic gas (dilute

Boltzmann gas composed of hard spheres). For arbitrary

fluids (polyatomic gases, dense monoatomic gases and

liquids) one can retain the form of the last expression in

Eq. (24) by using a general definition of g obtained by

comparing Eqs. (2) and (24),

gðq; sÞ ¼ ðqeqÞ2ðo2e=oj2s Þ
eq
: ð26Þ

In the ideal gas case the derivative o2e=oj2s ¼ ð2=5Þ
ðm2=k2q2Þ from Eq. (24) and the definition (25) is im-

mediately recovered given the definition (26). Eq. (26)

applies a hypothesis about the equality of the kinetic

and static nonequilibrium energy corrections in a

thermal shock wave front Sieniutycz’s [11]. The hy-

pothesis can be used to compute ðo2e=oj2s Þ
eq

for arbi-

trary fluids as T=ðqcpGÞ and hence g as Tq=ðcpGÞ,
where G is the shear modulus. Equilibrium values of

thermodynamic parameters can be applied in such ex-

pressions. For the ideal gas the shear modulus is just

the pressure P (a result known by Maxwell) and

cp ¼ 5k=ð2mÞ. These result allow one to recover defi-

nition (25) from the expression g ¼ Tq=ðcpGÞ; they

support the hypothesis mentioned above. However, for

the purpose of general considerations the use of the

implicit dependence of g on the basic variables ðq; sÞ
will be enough, i.e., the function gðq; sÞ will be used

when passing to arbitrary fluids. Eq. (24) shows that

when the coordinates s, q (or v) and js are used then

(with accuracy to second-order terms) the nonequilib-

rium energy correction of an ideal gas does not depend

explicitly on entropy s. In the energy representation,

the ‘‘nonequilibrium corrections’’ DT and DP obtained

from Eqs. (5)–(8) are, respectively,

DT ðs; q; jsÞ ¼ 0 ð27Þ
and

DP ðs; q; jsÞ ¼ q2ðoDe=oqÞs;js ¼ �gq�1j2s : ð28Þ

The entropy flux adjoints as and js; Eqs. (9) and (10), are,

respectively,

as ¼ ðoDe=ojsÞs;q ¼ gq�2js: ð29aÞ

and

is ¼ gq�2js ¼ gsvs ¼ gsðus � uÞ: ð29bÞ

The entropy diffusion velocity vs ¼ us � u ¼ js=qs ¼ js=qs

was introduced in Eq. (29b). One could also introduce

there the product kBgs which has the dimension of mass.

For the ideal gas this product is ms ¼ 2=5ðm2sk�1
B Þ which

is a measure of heat inertia. Eqs. (27)–(29b) can also be

obtained from Eqs. (11)–(13).

From Eqs. (27) and (28) one has for an ideal gas in

energy representation

T ðs; q; jsÞ ¼ T ðs; q; 0Þ 
 T ðs; qÞeq ð30Þ

and

Pðs; q; jsÞ ¼ Pðs; q; 0Þ � gq�1j2s


 Pðs; qÞeq � gq�1j2s : ð31Þ

These formulae link the intensities T and P at the points

A and B in Fig. 1. Note that e 6¼ eeq in this representa-

tion (Fig. 1, points A and B).

The nonequilibrium temperatures and pressures were

considered by Jou and Casas-Vazquez [12] in the en-

tropy representation. An experiment has also been sug-

gested to directly check their physical reality based on

assumption that a thermometer reads the nonequilib-

rium rather than local equilibrium T. They defined

nonequilibrium corrections to equilibrium quantities in

terms of the partial derivatives of the function

sðe; q�1; qÞ with respect to e and q�1 taken at constant q

rather than constant js. Here, however, ‘‘nonequilib-

rium’’ T and P are defined in terms of the partial de-

rivatives of the nonequilibrium energy eðs; q�1; jsÞ with

respect to s and q (or q�1 ¼ v) taken at constant js. In

fact, in order to preserve the invariance of dissipation

the entropy flux should be taken as the proper variable

of the energy representation [13]; thus the change of the

variable from q to js is madatory. Furthermore, the ref-

erence (equilibrium) states are not equivalent in the two

representations. When this distinction is kept in mind

the results become consistent. As Eq. (30) indicates T

contained therein is equal to the equilibrium tempera-

ture T ðq; sÞ which is both the measure of mean kinetic

energy of an equilibrium and the derivative of energy

with respect to the entropy. This equality occurs because

we chose the entropy flux js, not the heat flux q, as the

nonequilibrium variable in energy function e. If one

differentiates the nonequilibrium entropy s with respect

to the energy holding q constant, then one obtains the

reciprocal of the nonequilibrium temperature of Jou and

Casas-Vazques [12] TðCÞ which differs from the reciprocal

of the corresponding equilibrium temperature T eq by a

term quadratic in q. In general the ‘‘nonequilibrium

temperatures’’ (understood as the fifth moment of the
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both nonequilibrium and equilibrium density functions)

are not the measures of mean kinetic energy. It is known

that in the kinetic theory

3

2
kBTðCÞn ¼

Z
1

2
mC2f dc ¼

Z
mC2f eq dc; ð32Þ

so that f/1 does not contribute to the fifth (first four)

moments of the nonequilibrium distribution function

[2,12,14]). Here TðCÞ is derivative ðos=oeÞ�1
js¼0 pertaining to

isoenergetic equilibrium at e¼ constant. The nonequi-

librium intensities discussed here should be understood

as no less and no more than definitive partial derivatives

of the nonequilibrium energy [or measures of these de-

rivatives as, e.g. in Eq. (4)] computed for definite vari-

ables. The same pertains to the corrections DT and DP .

They are generated here for the purpose of concrete

calculations but the question of the proper (natural) set

of nonequilibrium variables in e still needs more inves-

tigation. In what follows we describe the nonequilibrium

states in terms of the equilibrium quantities of definite

representation and nonequilibrium fluxes (js or q). Such

a description is representation dependent and thus needs

careful handling; however, it allows one to exploit the

standard transformations of classical equilibrium ther-

modynamics. Similar problems arise for the chemical

potential. The consequences of the nonequilibrium

contributions to the chemical potential has been studied

in polymers and in suspensions [5]. An extension of the

classical Einstein’s formula linking mobility and diffu-

sion coefficients shows that the drift contribution to l
equals �mu2=2, then higher terms appear.

The nonequilibrium temperatures T, pressures P and

chemical potentials l are considered here under the as-

sumption that the specification of the extended state

(classical static variables and flux densities) is sufficient to

define the thermodynamics of the system in question. The

statistical aspects of nonequilibrium thermodynamic in-

tensities were investigated by Keizer in his theory of ele-

mentary molecular processes that drive the system

deterministically and determine the extent of fluctua-

tions. This leads to a generalization of the entropy hessian

based on the theory of nonequilibrium fluctuations [15,

see also Section 5]). The theory of steady states leads to a

transition probability formula with covariance matrix

differing from that at equilibrium. Due to this difference,

the thermodynamic intensities, the formal derivatives in

the Gibbs formula, differ from their equilibrium values.

4. Nonequilibrium Gibbs equations, Lagrangians and

conservation laws

The results discussed above help obtain two basic

quantities which characterize the moving nonequilib-

rium gas, the total energy density, E, and the corre-

sponding kinetic potential L, and to give explicit

formulae for perfect derivatives of these quantities. The

formulae will be next exploited in Chap. 5 to accomplish

the important goal: to determine components of the

energy–momentum tensor and corresponding conserva-

tion laws for the fluid with heat flow.

In the energy representation, the total volumetric

energy E of a nonequilibrium fluid which moves with the

hydrodynamic velocity u [mass flux J ¼ qu� is described

by a formula

Eðq; s; js; JÞ ¼ qeeqðs; qÞ þ 1

2
q�1gj2s þ

1

2
q�1J2

þ qwðx; tÞ; ð33Þ

where wðx; tÞ is the external gravitational field. The first

two terms on the right hand side, respectively, describe

densities of the internal energy at equilibrium and the

nonequilibrium component of internal energy. The last

two terms, respectively, express densities of kinetic and

potential energy. In the entropy representation total

energy (33) becomes (Fig. 1)

Eðq; e; q; JÞ ¼ qeþ 1

2
q�1J2 þ qwðx; tÞ ð34Þ

which is just the usual energy formula used in the non-

equilibrium thermodynamics and kinetic theory. Note

that in this representation the energy E does not contain

explicitly the nonequilibriumvariable, which is in this case

the heat flux, q. However, this flux appears in the non-

equilibrium correction to the entropy function, Eq. (23).

The related equilibrium energy density is simply qeeq ¼ qe.
Comparison of two representations reveals an effect of

appearance or disappearance of various ‘‘kinetic’’ terms

when passing from one to another representation. This is

caused by the difference between the equilibrium reference

states (B and C). Further, to state the Hamilton’s princi-

ple, the energy representation is used.

Below we write down the perfect differentials of en-

ergy (Gibbs equations) for the case of the ideal hard

sphere gas where g is the constant given by Eq. (25). The

perfect differential of E, Eq. (33), has the form

dE ¼ qT eqdsþ P eqq�1

�
þ eeq � 1

2
gq�2j2s �

1

2
u2 þ w

�
dq

þ gq�1js:djs þ u:dJ� qF:dxþ qwtdt ð35Þ

where u ¼ J=q, F ¼ �rw (the external force),

wt ¼ ow=ot, and the equilibrium reference temperature

T eq ¼ ðoeeq=osÞq. In Eq. (35) variables typical of the

Eulerian fluid theory (with the extra variable js) are used

to express the total differential of the volumetric energy.

When more popular variables qs, q; u ¼ J=q are used and

the velocity of the entropy diffusion vs ¼ js=ðqsÞ is in-

troduced then Eq. (35) takes a more familiar form (36),

dE ¼ ðT eq þ gsv2
s ÞdðqsÞ þ ðleq þ w þ u2=2 þ gqv2

s Þdq

þ gsjs � dvs þ J � du� qF � dxþ qwtdt; ð36Þ
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where leq ¼ ðoqeeq=oqÞqs is the equilibrium chemical

potential. Finally we find the perfect differential of the

specific total energy e ¼ E=q, a counterpart of Eq. (4),

dðE=qÞ ¼ T eqdsþ ðP eq � gvj2s Þdvþ vgsvsjs � djs
þ u � du� F � dxþ wtdt; ð37Þ

which is consistent with derivatives described by Eqs.

(29a)–(31). We purposely have given here the several

equivalent energy Eqs. (34)–(36) because it is instructive

to observe how various derivatives (oE=os, oe=os, etc.)

depend on the irreversible flux js in the system. The

specific results obtained above incorporate the assump-

tion of constancy of coefficient g, Eq. (25), which is the

property of the ideal gas. The nonequilibrium correc-

tions to classical thermodynamic quantities depend

crucially on the variability of g with conventional state

variables and reference equilibrium state. Therefore Eqs.

(35)–(37) may be of limited use for fluids which do not

obey Clapeyron’s equation (e.g. liquids). In those cases

the use of variable g ¼ Tq=ðcpGÞ based on shear mod-

ulus G, as discussed above, is recommended. Alterna-

tively, one can rely on other specific models of thermal

inertia.

We shall now tend to derive conservation laws from

an optimality principle for the physical action. As the

process variables we use isoentropic equilibrium tem-

perature T eqðq; sÞ and pressure P eqðq; sÞ and nonequi-

librium corrections (for definite variables) as functions

of v2
s or j2s . The fundamental quantity from the viewpoint

of variational analysis is the kinetic potential L. We will

see that, from the viewpoint of thermodynamics, L is not

less valuable thermodynamic potential than those more

popular others. Any use of L as thermodynamic po-

tential is allowed, provided that the standard thermo-

dynamic requirement is met: L is expressed in terms of

its natural variables in the sense of Callen [6].

In Eulerian fluid mechanics the classical kinetic po-

tential L0 is the Legendre transformation of the energy

density with respect to the density of momentum (qu or J,

in the nonrelativistic case). This result comes, of course,

from the mechanics of material points. However, in the

case of a nonequilibrium fluid described by Eq. (34) the

situation is more involved because the energy may change

not only by the motion of mass (the J flux) but also by the

motion of entropy (the js flux). Consequently one has to

decide whether to use the conventional Legendre trans-

form with J only, or to choose an extended (double)

Legendre transform, using both J and js or J and is. Our

tests in a previous work [4] show that only the extended

kinetic potential, Eq. (38), allows one to recover the

proper energy formula, Eq. (33), from the approach

through Hamilton’s principle. In other words, only the

extended (double) Legendre transform is correct

L ¼ J:oE=oJþ js:oE=ojs � Eðq; s; J; jsÞ: ð38Þ

Due to the linearity of relationship linking js, as, and

is the use of as or is in Eq. (38) is still correct. The use of

the entropy flux in Eq. (38) in the framework of linear

theory is the matter of convenience. In fact, the arbi-

trariness of use js, as, or is holds only in the case when

each of these quantities is proportional to the momen-

tum density is associated with the density of entropy flux

js. This variable is called the thermal momentum, and it

is the proper or natural variable in E when the energy is

transformed into the Lagrangian. We have shown ben-

efits resulting from the use of the thermal momentum in

many circumstances. Eq. (38) is correct because works

with variables proportional to respective momentum

densities.

To obtain the energy–momentum tensor and corre-

sponding conservation laws we shall exploit the obser-

vation that analytical form of conservation laws which

does not incorporate constitutive equations is indepen-

dent of their reversibility properties. This feature, which

is equivalent with the statement that the matter tensor

compontents are the state functions, allows one to derive

the energy–momentum tensor and corresponding con-

servation laws without the prior knowledge of constit-

utive or kinetic equations. The associated approach is

outlined below.

For the energy density given by Eq. (33) above, the

double Legendre transform (38) is

Lðq; s; js; JÞ ¼
1

2
q�1J2 þ 1

2
q�1gj2s � qeeqðs; qÞ

� qwðx; tÞ: ð39Þ

To obtain the energy–momentum tensor and related

conservation laws, Hamilton’s principle in the Eulerian

representation of the fluid motion is used. The con-

straints resulting form the conservation of mass and

entropy are taken into account by using the method of

Lagrange multipliers, / and g. Hence the following ex-

pressions

/ðx; tÞ oq
ot

�
þr:J

�
¼ 0; ð40Þ

gðx; tÞ oqs
ot

�
þr:ðJsþ jsÞ

�
¼ 0 ð41Þ

are added to the kinetic potential L in the action inte-

gral. Here / and g are the field functions describing the

Lagrangian multipliers associated with the mass and

entropy conservation. The sum Jsþ js in Eq. (41) is the

total entropy flux composed of the convective part

Js ¼ qus and the diffusive part js. As it is well known, the

diffusive flux js is related to the heat flux, but we do not

make this assumption in advance. In fact, in this ap-

proach, the entropy flux is a more fundamental quantity

than the heat flux q. The relativistic invariance of total

entropy and the existence of a well-defined relativistic
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four-vector of the entropy, contrasted with the absence

of such properties for the heat flux, support this ap-

proach.

In addition to the constraints associated with Eqs.

(40) and (41) one more constraint should be taken into

account. This is the so-called Lin’s [16] constraint pre-

serving the identity of each definite fluid particle. It re-

sults in the constancy of the Lagrangian coordinate

aðx; tÞ of this particle ðda=dt ¼ 0Þ along the path. Scalar

a can be used in the case of our displacement-free model

[17]. Hence the expression

kðx; tÞ q
oa
ot

�
þ J:ra

�
¼ 0; ð42Þ

with the new Lagrangian multiplier kðx; tÞ is added to

the kinetic potential L. As a result, an action functional

is obtained in the form

A0 ¼
Z

Lðq; s; J; js; x; tÞ
�

þ /
oq
ot

�
þr:J

�
þ g

oqs
ot

�
þr:ðJsþ jsÞ

�
þ k q

oa
ot

�
þ J:ra

�	
; ð43Þ

which, however, leads to components of the energy–

momentum tensor Gjk containing the Lagrangian

multipliers explicitly. In order to arrive at ‘‘physical’’

components of Gjk (without multipliers) expressions (40)

and (41) in Eq. (43) are transformed, in the known way,

by using the divergence theorem and rejecting four-di-

vergences [18]. This procedure does not affect stationary

conditions of the action and yields

A¼
Z

Lðq; s;J; js;x; tÞ
�

þq
o/
ot

�
þJ �r/

�
þ qs

og
ot

�
þðJsþ jsÞrg

�
þ k q

oa
ot

�
þJ �ra

�	
: ð44Þ

In the case when js ¼ 0 in L and in the g term of

Eq. (44) the action functional goes over into that for the

Eulerian fluid. It can be shown that the physical mean-

ing of the Lagrangian multipliers remains the same as in

the case of the Eulerian fluid, namely / is the velocity

potential when the flow is irrotational and at the same

time the Lagrangian action of a fluid particle which has

the initial velocity k. The convective derivative of g is

just a nonequilibrium temperature T.

The conservation laws are obtained for extended ki-

netic potential (39) from the basic expression for the

energy momentum tensor

Gjk ¼
X

1

oq1

ovj

oK
o oq1=ovkð Þ

� �
� djkK; ð45Þ

where djk is the Kronecker delta and v ¼ ðx; tÞ comprises

the spatial coordinates and time. The first N€oother’s

theorem yields the invariance conditions for the action

A½qðvÞ� with respect to the parallel translations of space

and time coordinates [14]. In absence of external fields

these invariance conditions are conservation equations

for momentum and energy, yet, when external fields are

present, the Lagrangian K contains explicitly some of

coordinates vj. Then only balance equations result. Ex-

plicitly they areX
k

oGjk

ovk

� �
þ oK
ovj

¼ 0 ð46Þ

for j; k ¼ 1; 2; . . . ; 4. Eq. (46) is the formulation of bal-

ance equations for momentum ðj ¼ 1; 2; 3Þ and energy

ðj ¼ 4Þ. In absence of external fields they describe the

vanishing four-divergences (div, o=otÞ of Gjk.

The tensorG ¼ Gjk has the following general structure

G ¼ T �C
Q E

� �
; ð47Þ

where T is stress tensor, C is momentum density, Q is

energy flux density, and E is total energy density. The

components of this tensor are well known for the adia-

batic fluid in which heat flow is absent (‘‘perfect fluid’’;

[14]). The case of fluids with finite thermal conductivities

is most difficult; thus any implications of action (44),

which refers to fluids conducting heat ideally, are of

interest.

Eq. (44) and its stationarity conditions lead to the

extremum Lagrangian in the form

K ¼ P eqðq; sÞ � 1

2
ðog=oqÞsj

2
s ð48Þ

which is the nonequilibrium pressure at point A, Fig. 1.

It can be obtained by differentiation of nonequilibrium

energy e versus q (or v) and keeping constant the en-

tropy s and the thermal momentum is (the ‘‘natural’’

variables of e). Eq. (48) is a generalization of the result

known for the equilibrium Eulerian ‘‘perfect’’ fluid

without heat, where K ¼ P in both Newtonian and rel-

ativistic cases. With the stationarity conditions of action

(44) and Eq. (48), the stress tensor T a
b follows in the form

ða; b ¼ 1; 2; 3Þ

Ga
b ¼ T a

b ¼ � oL
oJ a

Jb �
oL
ojas

jsb � Kda
b

¼ quaub �
1

2
qgs2va

s vsb � da
b P eqðq; sÞ
�

� 1

2
ðog=oqÞsj2s

�
:

ð49Þ

This theory leads also to the same vector of the momen-

tum density Ga
4 ¼ �Ca for which one obtains ða ¼ 1; 2; 3Þ

�Ga
4 ¼ Ca ¼ o/

oxa
q þ og

oxa
qsþ oa

oxa
qk ¼ oL

oJ a
q

¼ qua: ð50Þ

Thus, the momentum density equals the density of mass

flux J.
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In the energy representation, the equation of mo-

mentum balance resulting from the general formula, Eq.

(46) taken for j ¼ 1; 2; 3; k ¼ 1; 2; 3; 4 and Eqs. (49) and

(50), is, in vector notation,

oqu
ot

þr: quu

�
þ I P eq

�
� 1

2
ðog=oqÞsj

2
s

�
þ gqs2vsvs

�
�qF ¼ 0: ð51Þ

In comparison with Eulerian fluid, the diffusion of

heat or entropy results in the appearance of stresses

which can exist even if the fluid is at rest ðJ ¼ 0Þ. This

effect is also predicted by Grad’s [2] analysis of the

Boltzmann equation.

Consider now the vector of the density of energy flux

Qb ¼ G4
b. Eq. (45) and stationarity conditions of action

(44) yield

�G4
a ¼ Qb ¼ � o/

ot
Jb �

og
ot

ðJbsþ jsbÞ þ
oa
ot

Jbk

¼ � oL
oq

Jb �
oL
qos

�
� J

q
:
oL
ojs

�
jsb: ð52Þ

Whence, the energy flux for kinetic potential (39) and

action (44) is

Qb ¼ qub
1

2
qu2

�
þ heq þ w þ 1

2
gs2v2

s �
1

2
ðog=oqÞsj

2
s

�
� gsðu:vsÞjsb þ T

�
� 1

2
ðog=oqÞsj

2
s

�
jsb: ð53Þ

Eqs. (48), (50) and (51) show explicitly effects of non-

equilibrium terms. To verify the validity of L we calcu-

late the total energy density G4
4 ¼ E, Eq. (45) for

j ¼ k ¼ 4, which is

G4
4 ¼ E ¼ � o/

ot
q � og

ot
qsþ oa

ot
qk � K

¼ � oL
oq

q � P eq

�
� 1

2
og=oqð Þsj

2
s

�
: ð54Þ

When L of Eq. (39) is applied in Eq. (54) the result is E

consistent with Eq. (38)

E ¼ q
1

2
u2

�
þ eeqðq; sÞ þ 1

2
gs2v2

s þ w

�
: ð55Þ

Thus the true nonequilibrium energy density E, Eqs.

(33) or (34), is recovered after using the Legendre

transformation of Eq. (38) and kinetic potential (39).

The associated energy balance reads

oq
1

2
u2

�
þ eeqðq; sÞ þwþ 1

2
gs2v2

s

��
ot

þr: qu heq

��
þ 1

2
u2 þwþ 1

2
gs2v2

s �
1

2
ðog=oqÞsq�1j2s

�
þ T eq

�
� 1

2
ðog=osÞqj

2
s

�
js þ ðgq�1jsjsÞ � u

	
� qow=ot ¼ 0:

ð56Þ

The recognition of the nonequilibrium variables

ðe; T ; P Þ as those pertaining to the actual physical state

(point A, Fig. 1) makes it possible to express balance

equations in terms of these variables. The results are not

only simple but also take an ‘‘objective’’ form indepen-

dent of the representation used. This occurs because the

parameters of the reference equilibrium state (B, C or D;

Fig. 1) do not appear in the ‘‘objective’’ balance laws.

The representation-free form of the balance Eqs. (51)

and (56) is, respectively,

oqu

ot
þr � ðquuþ IP þ PÞ � qF ¼ 0; ð57Þ

oq
1

2
u2

�
þ eðq; sÞ þ w

��
ot þr: qu h

��
þ 1

2
u2 þ w

�
þ T js þ P � uþ P � vs

�
� qow=ot ¼ 0: ð58Þ

All quantities pertain here to point A in Fig. 1. Here

P ¼ gq�1jsjs ¼ qgs2vsvs is the entropy flow contribution

to the pressure tensor P and P � u is the related power.

Although this form of balance law resembles precisely

that known from the description of fluids in local equi-

librium, we stress that the quantities e; P and T are here

flux dependent. This terms, of course, from the non-

equilibrium nature of fluid being considered. Splitting

these quantities into the sum of the parts of a reference

equilibrium (B, C or D; Fig. 1) and nonequilibrium flux

corrections is always representation dependent – the

price paid by one who wants to use the well-known

equilibrium data in disequilibrium. Thus, whenever the

objectivity is not assured, equations of nonequilibrium

fluids change their forms depending on variables used,

as nonequilibrium corrections appearing in one repre-

sentation change or vanish in another representation.

Yet, as we have already attained the objective or rep-

resentation-independent form of balance laws, we omit

details of comparison of balance laws in various repre-

sentations.

5. Work limits through statistical and stochastic ap-

proaches

Here we deal with the second group of problems,

namely, those involving the production of consumption

of work in a finite time.

They often occur in practical or industrial devices,

where extremum of work is sought for a given state

change of a controlled (key) fluid and for a given du-

ration. We consider the controlled fluid which changes

its thermodynamic coordinates between two fixed states

while interacting all the time with the environment

through a sequence of perfect work-producing devices

(Carnot thermal machines). Fig. 2 schematizes a se-

quential work-production process. We assume that we
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work with the system without inertial affects. When the

duration allowed to accomplish the state change of

the controlled fluid is infinite, the extremum work is the

change of classical (reversible) exergy. However, when

the duration is finite only irreversible process is possible.

In this case a generalized or finite-time exergy charac-

terizes properties of extremal work. For continuous

process with pure heat transfer a simple formula was

found for the finite-time thermal exergy

ExðT ; T e; hÞ ¼ cðT � T eÞ � cT e ln
T
T e

 cT e

ffiffiffiffiffiffiffi
h
cT e

r
ln

T
T e

¼ ExðT ; T e; 0Þ  T eSr; ð59Þ

[19]. This corresponds with an infinite number of stages

N in Fig. 2. The finite-N counterparts of the formula

were also obtained. Here h is an optimal intensity index

numerically equal to a hamiltonian, ExðT ; T e; 0Þ is the

classical exergy, and Sr ¼ min Sr is the minimal entropy

production. The upper sign refers to the heat-pump

mode in which power is consumed and the lower one to

the engine mode in which power is produced. In related

work functionals, the irreversibility effect is represented

by their broken invariance when the process rate u is

replaced by the inverted rate �u. Post-thermostatic, rate

penalty terms are crucial for work potentials generalized

to finite durations. Our results show that the Hamilton–

Jacobi–Bellman (HJB) theory is a basic ingredient of the

analysis leading to the finite time exergy [19,20].

We discuss here some related statistical issues. The

entropy serving to statistical analysis is the information-

theoretic entropy, and the modeling of the underlying

dynamics involves working with master equations in the

probability space. With the statistical theory at hand,

macroscopic results can be expressed in terms of the

pertinent statistical averages. One may expect that op-

timal and nonoptimal configurations of the cascade ar-

rangement (defined here macroscopically) can be

distinguished due to their statistical properties.

A synthesis of the statistical thermodynamics of

Onsager and the kinetic molecular theory of Boltzmann

has recently been achieved which may help accomplish

the above tasks [15]. This synthesis provides a mecha-

nistic foundation for thermodynamics and thermoki-

netics. It is based on the idea of elementary molecular

processes (indexed by i)

ðnþi1; nþi2; . . .Þ () ðn�i1; n�i2; . . .Þ ð60Þ

with the extensive thermodynamic variables represented

by the vector hni ¼ ðhn1i; . . . ; hnkiÞ. The super-

scripts + and) refer to the forward and backward steps

in generalized reactions. It can be shown that these

processes provide a natural description of bimolecular

collision dynamics and chemical kinetics. The transition

rate of an elementary process, that is the number of

times per second that it occurs in the forward or reverse

direction, is given by the canonical form

V þ
i ¼ Xþ

i exp

 
�
X

1

Y þ
1 ni1=k

!
; ð61Þ

and likewise

V �
i ¼ X�

i exp

 
�
X

1

Y þ
1 ni1=k

!
: ð62Þ

The constants Xþ
i and X�

i are the intrinsic rates of the

forward and reverse steps of the elementary process (i)

and are the basic transport coefficients in the canonical

theory. Yl are intensive variables which are functions of

the extensive variables; they are the derivatives of a local

equilibrium entropy SðhniÞ. With canonical representa-

tion for rates of elementary processes in resistors of

CAN stages, one can develop the statistical thermody-

namics of molecular processes in a form applicable to

systems close or far from equilibrium in which both

transport and rate processes can be treated in a unified

way, and nonlinear molecular mechanisms can be taken

into account.

For systems of CAN type mesoscopic descriptions

are in the state of development [21]. In the work adduced

the dynamics of the Carnot fluid is a sole effect described

by a master equation. However, since the transport law

has a considerable effect upon the engine operation,

master equations should also describe the dynamics of

transfer in resistors. Quantum master equations can be

applied, derived from the underlying theory of the sys-

tem and the coupled reservoirs [21]. The situation is

considerably simplified if the off-diagonal terms of the

density matrix are eliminated, leading to an analysis

based only on the energy-level populations. The first law

of thermodynamics has an interesting interpretation in

this context: the population transfer from one level to

the other is the microscopic manifestation of heat ex-

change, whereas changing the energy gap between the

levels (energy change caused by varying an external

field) is associated with work. Consequently, a macro-

scopic model of CAN cascade can be transformed in a

Fig. 2. The scheme of power production in a sequence of in-

finitesimal Curzon–Ahlborn–Novikov engines.
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corresponding mesoscopic model. A difficulty arises

when the analysis of CAN cascades involves relaxation

under the influence of a time-dependent field, where the

formulation of thermodynamically coherent master

equations is quite a subtle task.

To outline basics of modeling, consider the con-

trolled fluid composed of many noninteracting harmonic

oscillators (HO). Ignoring zero-point energy, the energy

levels of the HO are En ¼ nx ðn ¼ 0; 1; 2; . . . ; Þ where x
is the oscillator’s frequence in units where modified

Planck constant equals 1. The average energy is

hEi ¼
X1

0

pnðtÞEn ¼ x
X1

0

pnðtÞn ¼ xhni; ð63Þ

where pnðtÞ is the probability for finding the oscillator in

the level n. In the average energy differential,

dhEi ¼ hnidx þ xdhni, the first term is associated with

work and the second with heat. If we only allow tran-

sitions such that Dn ¼ 1, the master equation is

dpn
dt

¼ k"npn�1 þ k#ðnþ 1Þpnþ1
� ½ðk#nþ k"ðnþ 1Þ�pn;

ð64Þ

[22]. Detailed balance corresponds with k"=k# ¼ e�x=kT .

From the above equation, the differential equation for

hni is obtained

hni0 ¼ hni þ dhni
g0dt

; ð65Þ

where g0 ¼ k# � k" and hni0 ¼ k#=g0 ¼ ðe�x=kT � 1Þ�1
.

Eq. (65) preserves Boltzmannian distribution in time. It

refers to two macroscopic equations

T 0
1 ¼ T1 �

dQ1

dc1

ð66Þ

and

dQ1=dc 
 �u ¼ �GcdT
a0dA

¼ � qvcdT
a0avdx

¼ �vv
dT
dx

¼ �v
dT
dt

¼ � dT
ds

ð67Þ

which are well-known from the standard thermody-

namic theory of the process. The consistency condition

states that the term dQ1=dc1 ¼ ðg=g1ÞdQ1=dc is replaced

by �ðg=g1ÞdT=ds and s ¼ tg0g=g1. See Fig. 2 and related

references [19,20]. The basic equation (64) can thus serve

as a generalized constraint within the theory in which a

unique temperature of the driving nonequilibrium fluid

cannot be defined.

Underlying statistical and stochastic approaches

should also help understand the role and range of as-

sumptions on which the macroscopic model is based.

In fact, similar to other thermodynamic models, even

with taking dissipation into account (i.e. making the

thermodynamic description closer to reality), the mac-

roscopic model still remains highly abstract, as it still

carriers all abstract assumptions of the sequence of

elementary engine modules, such as: no heat (mass)

fluxes in the x-direction along the series of Carnot

engines, which means absence of their mutual inter-

ference or the lack of related conductances, and capa-

bility of taking work out of such a series of adjacent

engine modules. In fact, it is one of typical abstract

systems of thermodynamics as many others found in

books on applied thermodynamics rather than a defi-

nite practical system [10,23,24]). They all serve for

evaluation of thermodynamic limits (bounds) on the

work released (consumed) from (by) nonequilibrium

systems. Yet all models of these systems share an as-

sumption, typical of hydrodynamic level, which states

that the fluid flow is represented by motion of artificial

fluid particles, treated as small thermodynamics sub-

systems, which compose altogether the whole fluid. It is

then assumed that in macroscopic modeling – which

applies purely thermodynamic quantities – the size of

each elementary module, while small (‘differential’)

with respect to the whole sequence, must be large en-

ough in comparison to sizes of all microobjects (mol-

ecules), and that the molecular chaos takes place, thus

making possible definitions of thermodynamic param-

eters such as temperature, internal energy, etc. in terms

of pertinent statistical averages.

6. Evolution of multistate living systems by information-

theoretic entropy

Models of development of multistage systems can

successfully mimic some processes of biological devel-

opment and evolution, whereas the information-theo-

retic entropy can successfully be used to measure

changes in their statistical properties. The so-called

Wilinston’s law is often quoted in the evolution litera-

ture, which states that for an organism possessing many

of the same or similar elements, a tendency appears to

reduce the number of these elements along with the si-

multaneous modification (specialization) of these ele-

ments which are saved by the organism. Saunders and

Ho [25,26]) recall that the evolution leading from the

trylobite to crab is a suitable example illustrating this

tendency. It should be kept in mind that annelids, an-

cestors of trilobite, live today, and crabs, their mutants

or peculiar descendants in the evolutionary process, live

today as well. Trilobites became extinct in perm (270–

220 millions of years ago) in camber, and the problem of

their extinction calls for explanation. Szwast [3] has in-

vestigated evolution from trilobite (as an organism with

many states: segments and pairs of legs) to crab, with far

fewer of each and with one pair of legs modified (spe-

cialized) into claws. The basic problem was: why extra
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states (pairs of legs) evolved and what was the cause of

trilobites extinction. His mathematical model of the

evolution implies that the increase of number of states

(pairs of legs) is governed by extremum gradient of a

potential which may be either the information entropy

or a complexity function, as each of these quantities

increases with number of states in the system. On the

other hand, as shown by Szwast, a decrease of number

of states (pairs of legs) seem to result from catastrophes

on the trajectory of evolution, as the modification

(specialization) leads evolution to a catastrophe region.

What evolution criterion should actually be preferred is

the subject of current investigations; according to

Saunders and Ho the principle of minimum increase

holds for complexity function rather than for entropy.

However, as shown below, a related extremality analysis

can be developed for an arbitrary potential function [27].

Szwast’s [3] description of evolution involves calcu-

lations of information entropy, S ¼ �
P

pi ln pi; where

the summation is over the number of states. Here pi is

the probability of finding an element in the state i among

n states possible and the sum
P

pi ¼ 1. Maximum of

unconstrained entropy appears for the total random-

ness. In this case pi ¼ 1=n, for n states, and

Smax ¼ �nð1=nÞ lnð1=nÞ ¼ ln n. In the trilobite analysis,

however, the number of states is 2nþ 1 (2n legs and the

rest part of the body); thus Smax ¼ lnð2nþ 1Þ. Moreover,

it was only recently explained that entropy itself is not a

direct measure of disorder for growing systems as it is an

extensive quantity [28]. In other words, for growing

systems the classical definitions of disorder D ¼ eS and

order X ¼ e�S proposed by Schr€oodinger [29] are inap-

plicable. Their flaws are not shared by Landsberg’s

definitions of disorder and order. According to Lands-

berg, disorder D ¼ S=Smax and order X ¼ 1 � D. As Smax

depends on n, in Landsberg’s definition, both disorder D

and order X are functions of entropy S and number of

states in the system, n; i.e. D ¼ DðS; nÞ and X ¼ W ðS; nÞ.
For evolution processes the particularly important role

is played by the complexity C, which is a function of

disorder D and order X, i.e. C ¼ f ðD;XÞ. In the litera-

ture various functions f were advocated. A frequent

form has the simple structure C ¼ 4DX ¼ 4DðS; nÞ½1�
DðS; nÞ�, which was used by Szwast [3]. In this case the

maximum of C is attained for D ¼ 0:5 and equals the

unity.

The basic statement of Saunders and Ho [26] ‘‘Only

completely reversible changes are processes which

undergo without change of complexity’’ was successfully

applied in Szwast’s [3] analysis. This application requires

constancy of complexity or entropy (motions along

‘‘entropy isolines’’) when modifications or specializa-

tions occur at a constant number of states, n. In other

words, the decrease of states (pairs of legs) is a possible

process which is compensated during evolution by the

creation of modified states (claws), the process which

occurs along an isoline of entropy. This entropy is not a

maximum entropy for a given n; it is rather the entropy

which maximizes complexity C (in fact, probabilities

which would maximize entropy would rather minimize

complexity). Therefore, it is the set of conditions

dC=dS ¼ 0 and d2C=dS2 < 0, which define the entropy

isoline along which modification or specialization of an

organism is possible. In this model, the complexity-

maximizing entropy follows as Sopt
n or ŜSn ¼ ð1=2Þ

SnðmaxÞ, and the corresponding complexity Cn ¼ 1.

Both the maximal entropy (at the complete random-

ness), and the one which maximizes complexity ðŜSn or

one half of SnðmaxÞÞ are increasing functions of the

number of states, n.

In Szwast’s [3] evolution description, a map of pos-

sible states was obtained in the form of entropy isolines.

Evolution of states towards a crab refers to a situation in

which an organism with one pair of states (legs) is

modified (specialized) along a reversible path. With the

normalization condition incorporated to eliminate p2,

the probability attributed to one pair of states (legs), the

entropy isoline along which the specialization proceeds

has an equation Vnðp0; p1Þ 
 Snðp0; p1Þ ¼ ŜSn.
Fig. 3 gives the qualitative description of trajectories

of reversible modification (specialization) of one pair of

original states (legs) for various values of variable n,

which constitutes the sum of n� 1 identical pairs of states

(legs) and one pair being modified. Dots on trajectories

mark findings for organisms without specialization of

states (legs); thus they refer to organisms possessing n

pair of identical states (legs).

The following question arises: why an organism

possessing n of identical pair of states (legs) tends to the

state associated with nþ 1 pair of legs during the

evolution, or, why the evolution proceeds in the direc-

tion of an increase of identical states ? [3]. The results

below imply that it is the shortest line between the dot

point on the curve n and the curve nþ 1 which deter-

Fig. 3. A minimum distance problem between a dot point on

isoline n and the isoline nþ 1. In the evolution analysis, isolines

are paths of the reversible modification of single pair of states

(legs) for various n, where n is the sum of n� 1 pairs of the same

states (legs) and one modified pair.
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mines the location of the dot point on the curve nþ 1.

The considerations below substantiate this statement

with the help of the optimal control theory.

7. Potential principle of extremality as a driving force of

evolution dynamics

The extremality analysis can be developed for an

arbitrary potential function [27]. Let us introduce the

function

Fnðp0; p1Þ ¼ Vnðp0; p1Þ � bVVn ¼ 0; ð68Þ

where bVVn is the constant value of Vn along the isoline of

potential V. The numerical value of the function Fn
equals zero for all states corresponding with the com-

plexity-maximizing entropy. These are states located on

‘‘reversible isolines’’ of Fig. 3, for various n. The total

differential of F is the differential of potential V re-

stricted to values Vnðp0; p1Þ satisfying (68)

dFnðp0; p1Þ ¼ dVnðp0; p1Þ

¼ oVnðp0; p1Þ
op0

dp0 þ
oVnðp0; p1Þ

op1

dp1 ¼ 0: ð69Þ

The direction coefficient of the tangent to each of the

lines Vnðp0; p1Þ is the derivative v 
 ðdp1=dp0Þn. With Eq.

(69) this derivative can be determined in terms of the

partial derivatives Vn or Fn as

vn 

dp1

dp0

� �
n

¼ � oVnðp0; p1Þ
op0

oVnðp0; p1Þ
op1

:

�
ð70Þ

To predict the location of the dot point on the curve

nþ 1 when the dot point on the curve n is given, con-

sider the variational problem of the shortest line between

the dot point on the curve n and the curve nþ 1. This

corresponds with the minimum of a length functional

J ¼
Z pnþ1

0

pn
0

aðp0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 þ dp1

dp0

� �2

dp0

s
; ð71Þ

where a ‘‘conformal coefficient’’ aðp0Þ takes into account

the deviation from the Euclidean measure of length. It

was assumed here that only basic part of the body (with

the probability p0) influences the value of the coefficient

a. The integrand of this Lagrangian functional is des-

ignated by L. The general Euler–Lagrange equation for

the minimum of J is

oL
op1

� d

dp0

oL
oðdp1=dp0Þ

� �
¼ 0 ð72Þ

and, for the considered model, it has the form

d

dp0

dp1=dp0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ dp1=dp0ð Þ2

q
0B@

1CA ¼ 0: ð73Þ

This corresponds to Euclidean metrix and – if a ¼ 1 – to

the Euclidean distance. In a more general case, when the

coefficient a in Eq. (71) depends on all probabilities, the

problem can be stated as a geodesics problem.

The solution of Eq. (73) describes the family of the

straight lines

p1 ¼ C1p0 þ C2 ð74Þ

which are extremals in the flat space.

Any extremal which starts from the dot point on the

curve n and terminates on the curve nþ 1 should satisfy

the transversality condition [30]

dJ ¼ L
�

� oL
oðdp1=dp0Þ

ðdp1=dp0Þ
	

dp0

þ oL
oðdp1=dp0Þ

� �
dp1

¼ 0; ð75Þ

where variations dp0 and dp1 are linked by condition (70)

applied for the curve nþ 1

dp1

dp0

� �
nþ1

¼ � oVnþ1ðp0; p1Þ
op0

oVnþ1ðp0; p1Þ
op1

:

�
ð76Þ

This assures optimal location of the final point on the

curve nþ 1. For any J which has meaning of a length,

Eq. (75) describes the condition for the length extre-

mum of the extremal which starts from the dot point

on the curve n and terminates on the curve nþ 1.

Assuming arbitrary free variations of p0 and substi-

tuting variation dp1 from Eq. (76) into Eq. (75) yields

the condition

L� oL
oðdp1=dp0Þ

ðdp1=dp0Þnþ1

�
þ oVnþ1ðp0; p1Þ

op0

oVnþ1ðp0; p1Þ
op1

� �

 L� oL

oðdp1=dp0Þ
ðunþ1 � vnþ1Þ ¼ 0: ð77Þ

Condition (77) links two slope coefficients,

unþ1 ¼ dp1=dp0 or the tangent to the extremal of integral

J and vnþ1 or the tangent to the isoline

Vnþ1ðp0; p1Þ ¼ bVVnþ1, Eq. (70), at the optimal end point

where the extremal reaches the curve nþ 1. For our

Lagrangian L, the above condition takes the form

aðp0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 þ u2

nþ1Þ
q8><>: � unþ1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1 þ u2
nþ1Þ

q ðunþ1 � vnþ1Þ

9>=>;
¼ 0: ð78Þ

In fact, we observe here the case of Euclidean geometry:

conformal coefficient aðp0Þ does not change the resulting

transversality condition, which is the same in the case
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when a ¼ 1 and when a is arbitrary function, aðp0Þ. Eq.

(78) can be simplified to the form

unþ1 ¼ � 1

vnþ1

ð79Þ

which describes orthogonality of the slopes unþ1 and

vnþ1. From Eqs. (70) and (79),

dp1

dp0

� �
nþ1

¼ oVnþ1ðp0; p1Þ
op1

oVnþ1ðp0; p1Þ
op0

�
ð80Þ

which implies the gradient dynamics for change of

probabilities with time in the form

dp0

dt

� �
nþ1

oVnþ1ðp0; p1Þ
op0

�
¼ dp1

dt

� �
nþ1

oVnþ1ðp0; p1Þ
op1

�
¼ x: ð81Þ

The frequency-type coefficient x has interpretation of a

kinetic constant governing the state modification pro-

cess. While Eq. (81) refers to the simplest metric

gik 
 dik, its tensor generalization can easily be obtained

for arbitrary gik and, in particular, to an arbitrary

function aðp0; p1Þ in Eq. (71). Taking into account that

our notation deals with probabilities indexed by sub-

scripts, it will be the easiest to treat all independent

probabilities as covariant coordinates. To attain the

tensor generalization, we transform Eq. (81) to another

(primed) coordinate frame which may be curvilinear. We

find

dp

dt
¼ op

op0
dp0

dt
¼ x

oV
op

¼ x
op0

op

oV
op0

ð82Þ

whence

dp0

dt
¼ x

op0

op

 !
op0

op

 !
oV

op0

� �
¼ xg�1 oV

op0

� �
; ð83Þ

where g�1 is the matrix of the contravariant metric

tensor. The corresponding matrix of covariant metric

tensor is then g. We can now ignore primes and write

down the obtained result in following tensor form

dpi
ds

¼ gik

oV
opk

� �
; ð84Þ

where the nondimesional tine s ¼ xt. The product of

the covariant metric tensor gik and the contravariant

gradient vector oV =opk is the covariant gradient vector,

oV =opk . Thus Eq. (84) states that the covariant rate

dpi=ds is equal to the covariant gradient vector,

oV =opk .
In the generalized case considered, an associated

discrete dynamics, which describes the passage of the

system from the state pðnÞ to the state pðnþ 1Þ, can be

written in the Onsager-like form

p0ðnþ 1Þ � p0ðnÞ

¼ L11

oVnþ1ðp0; p1Þ
op0

þL12

oVnþ1ðp0; p1Þ
op1

: ð85Þ

p1ðnþ 1Þ � p1ðnÞ

¼ L21

oVnþ1ðp0; p1Þ
op0

þL22

oVnþ1ðp0; p1Þ
op1

; ð86Þ

where Lik ¼ gikDs. In this model each single stage

number is identified with the change in the number of

state coordinates (legs) by one unit. The discrete nature

of dynamical equations in processes of biological de-

velopment and evolution was recently postulated as a

most relevant feature which is characteristic of evolution

processes with births, deaths or modifications [31]. The

applicability of the above set can be extended by as-

sumption that the starting point at the nth isoline is not

necessarily the dot point; with this extension the dy-

namics generated by Eqs. (85) and (86) covers the whole

probability space in which it is represented by trajecto-

ries orthogonal to the isolines of the potential. A de-

tailed explanation of the mechanism of state

catastrophes, based on this model and bistability and

Schl€oogl’s mechanism [32] is in progress. While many of

results obtained in this context can only be qualitative in

view of different definitions of complexity [33], com-

bining the results of contemporary theory of thermo-

dynamic metric with some numerical tests of evolution

can improve the situation. In particular, geometrical

measures for energy and entropy changes are known

[7,34–39,9,40–46]. Equivalence of statistical and phe-

nomenological metrices is an important issue [9,47]).

Extensions to local-nonequillibrium systems are in pro-

gress [48–50]). A review on geometrical methods in

thermodynamics has recently appeared [51].

8. Final remarks

We have shown the reality of expectation that non-

equilibrium thermodynamic ensembles will follow in the

future analyses from certain statistical extremum prin-

ciples in a similar way as ensembles of equilibrium

thermodynamics emerge at the present time [52–56]).

Main extremum formulations expose action-based and

entropy production-based extremum principles for pro-

cesses without work flow [14,13] and with work flow

[24]. Concept of Lagrangian coordinate for energy or

entropy has proved its usefulness especially in the con-

text of extremum principles of the action type. The role

of extremum principles of minimum entropy-production

type increases in view of fact that they generalize some

basic findings of equilibrium statistical mechanics, for

example, they interpret Lagrange multipliers of conser-

vation laws as nonequilibrium temperature and Planck

potentials. At the local equilibrium limit convergence of
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these nonequilibrium quantities to usual T and l=T
takes place [13], the result confirmed in the framework

of Liu’s method of Lagrange multipliers [57,58]). For

precise definition of local equilibrium in case of reacting

systems see the book by Lawton and Kingsburg [59].

Note, however, that in some examples discussed here

classical thermodynamic quantities need not be intro-

duced. On the other hand, equations of extremal varia-

tional processes are always Hamiltonian (or they can be

broken down to a Hamiltonian form). Wave fronts and

trajectories are two basic entities associated with such

equations.

Besides of the above main formulations, there are

also numerous extremum statements for other sorts of

problems. These are: variational formulations for

transport coefficients [60–64], variational settings for

dynamics described by master equation [65–67]), those

which involve Kullback’s [68] relative information; those

for variational derivation of Boltzmann equation [69],

and those associated with molecular dynamics methods

[70–72]). The entropy principle of extremality, consistent

with the above findings, was applied in these works in

several different contexts, such as: relation of the second

law to the power conversion of energy fluctuations [73],

stochastic dynamics described by Fokker–Planck equa-

tion related to a master equation for probabilities [67],

deterministic dynamics for reacting fields [13], and Fin-

slerian geometries of physical systems [74,75]).
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